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Abstract - A nonsingular transformation algorithm which converts a singular control problem to nonsingular one 
was developed to calculate optimal control profiles. Several chemical engineering problems for applying a nonsingular 
transformation algorithm were presented and optimal profiles were calculated in this paper. The singular control al- 
gorithm and nonsingular transformation algorithm were compared. The efficiency of the transformation algorithm 
was displayed in this article. The switching points from bang-bang to singular control were calculated by imposed 
initial conditions and control variable constraints. 
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INTRODUCTION 

Various numerical methods [Fraser-Andrews, 1989; Maurer, 
1976; Modak et al., 1989; Seinfeld and Lapidus, 1968; Soliman 
and Ray, 1972] for calculating singular optimal profiles have 
been developed. Since the optimal singular profiles are a func- 
tion of state and adjoint variables, and the initial conditions of 
state variables and f'mal conditions of  adjoint variables are 
known, some researchers [Maurer, 1976; Oberle, 1979] have 
used a multiple shooting method to solve this two-point bound- 
ary problem. The computational difficulties related to a singular 
control problem are often serious in calculating optimal con- 
trol profiles. Although the gradient method [Ko and Stevens, 
1971] was sometimes applied to a singular control system, ac- 
ceptable convergence was not obtained. Some researchers [Ko 
and Stevens, 1971; Soliman and Ray, 1972] have produced sub- 
optimal but not actual optimal solutions. 

Transformation methods were developed to circumvent the 
difficulty in solving the singular control problem. Kelley [1966] 
developed a transformation method which decreases the order 
of the system and converts the singular problem to a nonsin- 
gular control problem. The first order partial differential equa- 
tions have to be solved to use Kelley's transformation. There- 
fore, this method is rarely used for the optimal control solu- 
tion. Soliman and Ray [1972] used transformation of the con- 
trol variables, 8u = 8ul + &t2, proposed by Goh [1966], to cal- 
culate the optimal control profile. They compared solutions of 
each method. However, they could not produce actual optimal 
control profiles using their transformation technique. Modak 
et al. [1989] proposed unidirectional computational algorithms 
for the calculation of singular control profiles of single cell 
protein production [Chen et al., 1977; Dibiasio et al., 1981] 
with switching time estimation. 
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The basic idea of this paper is to convert a singular control 
problem to a nonsingular one by using transformed control vari- 
ables with gradient and initial condition constraints. If the initial 
conditions of the system are not at the singular state, bang-bang 
control actions are imposed to make the system in a singular 
state quickly and efficiently. Optimal trajectories for a system that 
has the bang-bang and singular control regions should have the 
maximal lime for the singular control period. 

In this article, the optimal control profiles of the chemical 
engineering system are calculated with a developed nonsingular 
optimization approach. 

S INGULAR CONTROL 

Singular control problems are formulated when the control 
variables appear linearly in the system equations. If we calcu- 
late the Hamiltonian of this system, it appears as a linear func- 
tion of control variables, and the optimal control profiles are 
very difficult to calculate for higher order and complex systems. 
The systems are given as the following differential equations: 

i = f(x) + bF (1) 

x(t o) = x 0 (2) 

where f is a nonlinear function of a state vector, b is a con- 
stant vector, F is a control variable, and x0 is the initial con- 
dition of the state vector. 

The objective of the optimal problem is to calculate the op- 
timal control profile, F(t), which minimizes a performance index 
that is a function of state variables. Constraints are typically im- 
posed on control variables: 

Maximize [PI = G(tp x(tl))] (3) 
F 

F ~  < F_< F,,~ (4) 

In the above equations, PI represents the performance index, 
G is the functional form of the performance index, x(tr is the 
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state vector x at the final time b F,~ is minimum control al- 
lowed, F,~ is the maximum control allowed, and t is the elaps- 
ed fermentation time. This performance index may be a function 
of the final time, which may either be fixed a pr /or /or  left un- 
specified. This problem is a standard calculus of variations prob- 
lem. This system is considered a singular control problem be- 
cause the Hamiltonian is a linear function of the control vari- 
able, F. The optimal control variable profile can be determined 
by the minimum principles of Pontryagin [1962]. 

M I N I M U M  P R I N C I P L E S  OF P O N T R Y A G I N  

The conlrol, which minimizes the Hamiltonian, minimizes the 
performance index. The Hamiltonian is a scalar function of the 
state and adjoint variables. It has a constant value during op- 
timal operations and is represented by multiplication of ad- 
joint variables and state equations as defined by the follow- 
ing equations : 

H = ,~r [~x) + bF] = !/(2, x) + ~(X)F (5) 

where 

~ = Z r f  (6) 

0 = Z rb (7) 

where the adjoint vector, g(t), must satisfy the following or- 
dinary differential equations: 

T 

and the transversality conditions are defined below. 

a(tl) = ~eI)  
3x(tl) (9) 

The minimum principle is to find the control trajectory which 
makes the Hamiltonian constant. Time derivatives of the Hamil- 
tonian are represented by the following equation and are equal 
to zero. Due to the relation between state variables and adjoint 
variables, the first two parts cancel. 

dH OH OX OH ~,~. 0H OF OH_ OH 0 F = 0  (10) 
dt - OX Ot ~- -~  -~-+-~-F- -~-~ ~t OF 

Since the Hamiltonian is linear in the control variable, F(t), the 
feeding policy depends on the coefficient, ~, which is called 
the switching function. When r is positive, the optimal control 
is F.,o. and the optimal control is F,~ when r is negative. If 
q~ is identically zero over a finite time interval, t~< t < tj, then 
the maximum principle cannot specify the optimal control dur- 
ing the interval. This is called the singular interval and the opti- 
mal feed rate is called the singular feed rate, F~(t). The trajec- 
tory followed by the state variables during the singular inter- 
val is called the singular arc. The optimal feeding policy is 
defined below : 

I 
F . .  

F(t)= F ~ ( 0 r  (11) 
[Fm~ r  oj 

The optimal feed rate sequence is a combination of bang-bang 

and singular intervals. 
1. Singular Optimal Control Strategy 

During the singular interval, the minimum principle cannot 
provide sufficient information to determine the singular feed 
rate and we have to use singular control theory. Since the switch- 
ing function, r is identically zero during the singular interval, 
all of its time derivatives must also be zero : 

dkr =~(k)=0 k = l ,  2, ..., oo (12) 
dr* 

where #(k) represents the k-th order lime derivative of #. A gen- 
eral expression for the singular feed rate is obtained by differen- 
tiating twice the switching function, ~, so that F appears linearly. 
The first order dimensionless time derivative of r yields : 

6= ~,rb = -  ~,r a~ b = )~re = 0. (13) 

The switching function is once again differentiated : 

= ,j.Tc + Zrcxi = -- &rfxb + ~,r c~ (f + bF~) = 0 (14) 

which can be rearranged to obtain the general expression for 
Fs(t): 

F,m <F~(t)= 3f( fxc-cxf)  
- ;tr c~ b <F,,~ (15) 

which is a nonlinear function of state and adjoint variables 
where the subscript s denotes evaluation during the singular pe- 
riod. Without elimination of 3, from this equation, obtaining the 
optimal feed profile requires solution of this two-point boundary 
value problem, in which the initial condition of the state vari- 
ables and the final conditions of the adjoint variables are known. 
Kelley et al. [1989] showed that the following (Generalized 
I~gendre-Clebsch) condition is necessary for the optimality of 
a singular arc. 

~-~-F d2q HF(x, 2,t)] ->0 (16) (-1)q ~F Ldt 2q 

where, q denotes the order of singularity. 

D E V E L O P M E N T  OF N O N S I N G U L A R  
T R A N S F O R M A T I O N  A L G O R I T H M  

For higher order systems having complex dynamic models, 
it is very difficult to derive the explicit or simple functional 
expression for the singular control profile. Several mathemat- 
ical and numerical approaches have been adopted to solve a 
singular system by using minimum principles. Conjugate gradi- 
ent methods have been used for the entire reaction time, bow- 
ever, they cannot determine the exact switching points. 

Some trials had been done to transform the ori~nal singular 
control problem to a simple form of a nonsingular optimiza- 
tion problem. Kelley [1966] proposed a transformation method 
which converts a singular control system to a n0nsingular con- 
trol one by decreasing the order of the system. This method 
needs a first order partial differential equation solving proce- 
dure and is difficult to implement for complex nonlinear dif- 
ferential equations. Other researchers have used different trans- 
formation methods and modifcafions to calculate suboptimal 
control profiles. 
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A modified nonsingular control strategy was developed to 
determine optimal control profiles by tmmforming control vari- 
ables and their constraints. 

N-th order fed-batch fermentation systems are described by 
the following differential equations. 

~ /=~(x ,  ........ x ,  t), i=  1 ..... n-2 (17) 

Xn_l = F (18) 

=f~(x ........ xn, t ) + S y ,  i=1  ..... n 
F,m _< F(t) _< F,,~ (19) 

M i n i ~ r  " [PI = G(tp x(tf))] (20) 

where, F is the control variable (feed rate) and PI is the per- 
formance index of the system to be minimized. We introduce 
transformation variables (z~) to change the singular control sys- 
tem to a nonsingular control system and define a new control 
variable. 

z i = x i, i = 1, 2 ...... n-1. (21) 

zn --x,/xn_t [New control variable] (22) 

Since x, and xn_ 1 are functions of the control variable F, and 
F is limited by F,~ and F~,=, the time derivative of the new 
control variable is also constrained. 

z~ "~ <- zn -< z ~  (23) 

where, ~ and ~"~ are calculated by state variables and limita- 
tion of control variables, Fm and F,~. 

The time derivative of x~ is replaced by a function of z~ and 
Z n - 1 .  

=fn  + flnF=znF +~zn-1 (24) 

The original control variable F is represented by a function 
of the modified control variable z~ and its time derivative. 

F = % z -1 - fn  _ g(z, %) (25) 
fln - -  Z n  

where, z~ is calculated by the transformed control variable z~ 
and is a function of time. Rewriting system equations by us- 
ing the transformed variables given: 

~ =~(z~ ........ zn, t), i =1  ..... n - 2  (26) 

% = f _ , ( z ,  ........ zn, 0, 

1 
zn-1 - Si _ zn {Zp + (S I - z n (O))z n_l (0)} (27) 

with constraint by the final condition of volume. 

1 
g - - -  {zp + (Sf - z n (0)) Zn_ 1 (0)} - -  Xn_l, f < 0 (28) 

Sy --Zz 

The Hamiltonian of this system is represented as a function 
of state and adjoint variables. 

n = ;I.rT-+ trg = h + t;tg (29) 

{~00 when g = 0  
where tx when g < 0 

The gradient of substrate concentration is a function of time 

and determined by substrate concentration profile. The adjoint 
equations must satisfy the following ordinary differential equa- 
tions: 

_~= OH 
"Oh _ t x 0 g  g = 0  
OX OX 
Oh 
OX g <0 

(30) 

Since the Hamiltonian is a nonlinear function of S, a control 
vector iteration technique can therefore be used to solve this 
problem. The derivative of the Hamiltonian with respect to sub- 
strate concentration is:  

0H 0h 
0z--7 - 0z--7 + ~e = 0 (31) 

For g < 0 ,  ce=0 and Eq. (31) determines the optimal control 
profile S'. For g=0, Eqs. (26 and 31) determine the S" and a 
which is needed in Eq. (30). 

From the derivation, we can prove that optimal profiles of 
singular control variables in a singular control system are the 
same as nousingular optimal profiles of transformed control vari- 
ables. Therefore, the calcul_ation of optimal profiles using a non- 
singular technique can be applied for higher order and complex 
dynamic systems. 

N U M E R I C A L  P R O C E D U R E S  

1. Guess the initial optimal control profiles (this automatically 
determines its derivative). 

2. Calculate the control variable constraints (the initial sub- 
strate concentration and the derivatives of the substrate concen- 
tration at the maximum and minimum feed rates). 

3. Calculate the state variables by forward integration of Eq. 
(1). 

4. Calculate the adjoint variables by backward integration of 
Eq. (8). 

5. Calculate the derivatives of the Hamiltonian from Eq. (5). 
6. Update the substrate concentration profile using the follow- 

ing control vector iteration with the substrate concentration con- 
straint [Eq. (28)]. 

�9 - d U  i 

7. Iterate until the increase in the performance index .is less 
than a specified tolerance (Steps 3 through 6). 

8. There may be one or more switching time(s) if the gradi- 
ent of the control variable is greater or less than the maximum 
or minimum control allowed. In this case, set the control action 
(s), pick the switching time(s), and calculate the optimal sub- 
strate concentration profile using Steps 1 through 7. 

9. Compare the performance index for different switching 
time(s), if applicable, and select the best performance index, 
switching time(s), and optimal substrate profiles. 
1. Example  I. Exothermic Chemical  Reaction in PFR 

The first example was adopted from Ko and Stevens [1971a, 
b]. The first-order reversible, exothermic chemical reaction tak- 
ing place in a plug-flow tubular reactor is considered the model 
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Table 1. The  parameters which were used for this system 

Parameter Value 
k,o 175360 
k2o 2.4885 x 10 TM 

E1 - 11374 
E2 - 22748 
J 300 
Tc 290 
l 5 
Xao 0.27 
To 415 

system. 

kl 
A ~  ~ B  

k2 

The mass and energy balance equations of  this reaction are 
given by 

,~A = k l ( 1 - x , ) - ~ x a  =R (33) 

= JR - Uff  - T c ) 0 4) 

The reaction constants are a function of temperature and ex- 
hibit Arrhenius kinetics. 

. - E ~ / R , . T  - - E ~ / I L T  

k I = kloe arid k z = k.z0 e (35) 

The reaction parameters of this system are given in Table 1. 
This problem has been solved by several researchers [Ko and 

Stevens, 1971b; Modak et al., 1989; Siebenthal and Aris, 1964] 
using various optimal control methods. Ko and Stevens [1971b] 
have used the combined gradient method to calculate the opti- 
mal control proftle of the heat transfer rate. Optimal profiles 
for several cases of control variable constraints are obtained 
using the combined method. Modak et al. [1989] used a uni- 
directional algorithm to calculate the optimal control prone.  
The optimal switching points were estimated and the flow rate 
was calculated explicitly. 
1-1. Singular Control Approach 

The control variable U is the heat transfer rate of the tubular 
reactor and is dependent upon fluid mixing or other coolant prop- 
erties. The minimal control action of this system is zero, de- 
noting the reactor at the adiabatic state. The maximal value of 
the control action is determined by the coolant properties and 
flow rate. 

The object of  this control problem is to maximize the con- 
centration of B. It is the same as minimizing the concentra- 
tion of A. 

J = 1V~m~ [x A (t:)] (36) 

The Hamiltonian of the system is given as 

H = J~l[kl(1-XA)-k2XA ]+ ~2[J(kl(1-XA)k2xA)-u(r-Tc) ] (37) 

The adjoint variables are calculated by taking the derivative 
of the Hamiltonian with respect to the state variables with final 
conditions calculated by the derivative of Eq. 0 6) with respect 
to the state variables. 

- ~a = - (Zz + 2. f l ) (k ,  + k2) Z l ( t f )  = 1 ( 3 8 )  

�9 ! t 

- ~ = -  (Z1 + EzJ)[k,(1- XA) -- k~A ] -- EzU Ez(t/) = 0 (39) 

Since the Hamiltonian is a linear ~ , ~ o n  of the heat transfer 
rote, this system is classified as a singular control problem and 
it may have bang-bang and singular control. The switching func- 
tion of this system is calculated from the derivative of the Ham- 
iltonian with respect to the control variable. 

3H 
= ~ = - ~2(T - T c)  (40) 

Control action U is determined by the sign of the switching 
function. If the switching function is greater than zero, the con- 
trol action should be minimal. If it is less than zero, the control 
action should be maximized to minimize the Hamiltonian. When 
the switching function is equal to zero, a singular control al- 
gorithm should be applied to calculate the optimal control ac- 
tion. By application of singular control theory, the optimal con- 
trol profiles are calculated. Singular control appears only when 
22 = 0. The optimal control during the singular interval is cal- 
culated by setting the switching function equal to zero. The 
singular control profile of this system has been calculated by 
Ko and Stevens [1971b]. 

R21R Us(t)= JR + (41) 
T -  T RE2(T- T )  

02R 02R 
w h e r e ,  R21 - ~)T0xA and R22 = 0T 2 . 

From Eq. (39) and 22=0, the relation between temperature and 
conversion during the singular control period is derived as fol- 
lows : 

T = E1 - E2 (42) 

in Fkl0El(1-_XA) ] 

L ~ 2 x A  J 

The relation between temperature and conversion during the 
singular period is derived by Eq. (42). After calculation of con- 
version and temperature, the singular control profile of U is cal- 
culated by using the derivative of the conversion and Eq. (34). 
1-2. Nonsingnlar Control Approach 

As shown in the example, it is difficult to derive the explic- 
it functional form of singular control profiles using singular 
control technique and to determine switching times for some 
cases. 

Therefore, we transformed the singular control problem to 
a nonsingular control one with temperature as a control vari- 
able. The objective for this system is to maintain the reactor 
temperature at its optimal state by manipulating the heat trans- 
fer rate. Since the reaction starts at the initial temperature (not 
singular temperatm~e) and the cooling rate is limited by coolant 
properties, the control of the temperature profile is consWained. 
Therefore, the optimal control of this system is composed of 
a constrained period and an optimal period. During the first 
period of reaction, the control variable U has limited control 
action in attaining a singular state as soon as possible. The 
first constrained control action is used to increase the reactant 
temperature for this problem�9 The switching time is the point 
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at which the control action changes from bang-bang to singular 
control. If the maximum control action is infinite, impulse con- 
trol action can be used to change a reaction environment to 
a singular state. The control variable U controls the tempera- 
ture at its optimal state. Therefore, the coolant flow rate con- 
trol problem can be converted into a simple temperature con- 
trol problem. The control action U is determined by converting 
Eq. (34) into U as a function of temperature and conversion. 

U = "i'+._____~_~ (43) 
T - T o  

By applying the maximum principle to Eq. (33), we can 
calculate the optimal trajectories of temperature and concen- 
tration by the following procedure. To minimiTe the final con- 
centration of X1, the reaction rate should be maintained at the 
maximal rate during the reaction period. The objective is achiev- 
ed by making the derivative of Eq. (33) with respect to tem- 
perature equal to zero. 

kloE 1 -E/R.T k2oE 2 -E/RoT d R = 0 =  2 e - ( 1 -  x , ) -  e -x,  (44) 
dT Ro T RoT 

The temperature is calculated from Eq. (44) and the solution 
is the same as Eq. (42). 

T = E1 - E2 (45) 

In kl~ - x , ) -  
K 2 0 E 2 X A  

Some problems can be solved by nonsingular algorithm with 
a mathematical approach, in which a switching time does not 
need to be estimated. From Eq. (44), the phase plane tempera- 
ture and concentration are calculated. Fig. l(a) shows the opti- 
mal trajectory (singular trajectory) phase plane. If the initial con- 
centration of Ca is pure, the initial optimal operating temperature 
for this system is infinity. Since the reactant feed temperature 
is 415 K, the first control action for this system is the minimal 
value of the control variable to increase the reactor temperature 
up to the singular temperature. Therefore, the singular control 
action should be followed by minimal control action. By apply- 
ing minimal control action to Eq. (34), the trajectories of tem- 
perature and conversion are calculated by the following proce- 
dure. Let U=0 and divide Eq. (34) by Eq. (33). The slope of 
initial control action on the phase plane is 300, as shown by 
the dotted line in Fig. l(a). 

1" dT --:-- = = J= 300 (46) 
x, 

From the initial state, the reactor operation follows the straight 
dotted line, the slope of which is 300. The straight line in- 
tersects with the singular arc (optimal trajectory) and follows 
it until the reaction stops or final conditions axe reached. There 
can be another limited control action, the existence of which 
is determined by the maximal beat transfer rate. If the maximal 
control variable is smaller than the critical control variable, there 
should be another limited conlrol action .(U,~). The critical con- 
trol variable is calculated at the intersection between the dott- 
ed line and singular arc. The critical flow rate is determined 
by Eqs. (33) and (34), and the result is shown in Fig. l(b). The 
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Fig. 1. (a) Phase plane of possible opln~l  ~ r y .  Ca) C ~  
heat flow rate. 

gradient, dxddx,, is calculated by numerical methods using the 
results in Fig. l(a). The following equations were developed 
from the relation between Eq. (33) and Eq. (34) : 

"i" dT JR - Uc (T - T~) (47) 
x, dx, 

The critical coolant flow rate is calculated from Eq. (47). 

N - ' r  c 

As shown in Fig. l(b), the critical conb'ol variable of this sys- 
tem is 0.6. At the inte~.~'tion, the ~nversion and temperature 
are 0.42 and 470 K, respectively. When the conversion is 0.42, 
the critical control variable is 0.6. It is represented by the dotted 
line in Fig. l(b). Fig. 2(a) shows the optimal control profile 
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Fig. 2. (a) Optimal heat transfer rate profile calculated by non- 
singular transformation algorithm (control action changes 
f r o m  m i n i m u m  to s ingular) .  (b) O p l l m a l  t e ~ p e l ~ t n r e  a n d  

conversion profiles initial temperature is 415 K and 
conversion is 0.25. 

of the tubular reactor calculated from the optimal temperature 
profile shown in Fig. 2(b). As explained before, the control ac- 
tion changed from minimal to singular. Since the critical con- 
trol variable is the same as the maximal control variable, only 
one switching point exists in this problem. Point A in Fig. l(a) 
is the reaction starting point of this system. At point B, the con- 
trol action changes from minimum to singular. The optimal con- 
versions and temperature profiles are shown in Fig. 2(b). The 
temperature rapidly i n ~  when the control variable is a min- 
imum. After the minimal control action, the temperature pro- 
file follows the singular control profile. Ko and Stevens [1971b] 
have drawn the phase diagram after solving the problem using 
a combined gradient method and analyzing the optimal trajec- 
tories. 

2. Example H. Series Reaction in a Plug Flow Reactor 
To review the number of switching lime changes with chang- 

es in the control variable constraints, a series reaction in a plug 
flow reactor is used as a model system [Douglas and Denn, 
1965]. The change in number of switching points is calculat- 
ed by the nonsingular control technique. There are three com- 
ponents in the reactor. The reaction constants follow Arrhenius 
kinetics. 

kl k2 
A �9 B �9 C 

The reaction kinetics and the initial concentration of each com- 

poneut are calculated as follows: 

d X A -  klC/o x2 x / (O)=l  (49) 
dt 

dx. = k,C.o XA ~ _ k~x. x B (0) = 0 (50) 
dt 

X c = l - - x  a + X  B (51) 

where, k 1 = kl0 e-~/v'~T and k 2 = kloe -E/I~T. 

The material and heat balance equations for a plug flow reac- 
tor have the following form. 

V 

d ~  
v dz 

dT 

dz = - klCA~ xa2 (52)  

= klCAo x 2 - k2x n ( 5 3 )  

2 m h ( T  c - T)  - ( ( -  zIH1)klC2o x2 + ( -  z ~ k 2 C A o X B ) l f f  2 

dz  ~ r 2 v ~  ( 5 4 )  

where, p= PA XA + P.X. + PcXc, and Cp = Ce XA + Cp XB + CecXc. 

The object of  this control problem is to maximize the con- 
centration of B at the end of the reaction by manipulating the 
coolant temperature. The performance index of this problem is 

el = MAn[- XB(Z = 1)] (55) 
ro 

We have used several dimensionless variables to simplify the 
equations. 
2-1. Singular Control Approach 

Eqs. (52) to (54) are changed to a simple dimensionless form 
and are given as the following equations: 

dXA- ax2e -~/~ (56) 
dy 

dxs - axle- ~/o_ fix s e- ~o (57) 
dy 

dO 
- -  = ~ / ( 0  c - -  O )  - -  [ ~ l X 2 e  - r~/0 + ~t~2X B e- r.r (58) 
dy 

Table 2. Dimensionless variables used in the series reaction 

z kloCAo l k2ol 2hl (- AH~)CAo 
Y = 7  ' a =  V ' f l = - V - ' Y = r v - - - ~  ' 61-  pC, T R 

82 _ (-- Z~2)CAo 0 =  T_T__ E1 E 2 
pCpT R ' T R ' ~= R--~g ' and ~z- RoTR " 
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For the minimization of the performance index, Pontryagin's 
maximum principle is used. The Hamiltonian of this system 
is given as 

H = AI(- axle-  r /5  + ~(tzxffe -x /0 -  flxB e- r"/5 

+ Zo[y(O ~ - O) - (c~,x2e - ~/0 + f162x " e- ~~ (59) 

To maximize the Hamiltonian of this system, the switching 
function is employed and the singular control technique appli- 
ed for this system. The switching function of this system is 

= ~ = 23y (60) 

To maximize the Hamiltonian of this system, the following 
control scheme should be applied : 

r > 0 Oc =~ Oo,,a~ 
r  O~ =Oo, ~ 
~) = 0 O~ = singular control (61) 

When q~ = 0, a singular control strategy is needed for this sys- 
tem. A singular control region exists for the case where 23 = 0 
and ~ = 0. The adjoint variables of this system are calculated 
as follows : 

= 2o(22 - )h - ~(~)xA e- r/o (62) 
d~ I _ OH 
dy 0x a 

dZ _ OH 
dy 

dZ3 _ OH 

_ _ -  + Z , gN (63) 

dy 00 - [;~I(- ~ e -  x/o) + A2o~e- x/o 

+ ' ) 

- ( , ~ x .  e- ~/~ + ~oflrzx. e- ~r176 ;tot (64) 

The final conditions of the adjoint variables are calculated by 
differentiating the performance index with respect to its state 
variables. 

/~,l(tf)-----0.0, /~2(tf)=--l, and A~(t/) --- 0.0 (65) 

The singular control technique is applied to the system. 
However, the explicit form of Oc is not calculated during the 
derivation of switching functions. The derivation of )~ is too 
complex to calculate as an explicit function of Oc. S i n c e  t he  

final condition of ~ is equal to zero and its derivative is also 
equal to zero, this system should be simplified to the optimal 
temperature profile calculation problem. The simplified adjoint 
variable equations are as follows: 

d ~ l _  OH 
dy 0x A = 2a(~2 - ~)xA e- x/0 (66) 

d22_ O i l _  ~f le -~0  (67) 
dy 0x a 

d ~  O H  - - -  z - ~ / a  
dy- - ~ - 0 -  ('- 4~ ) + ~~176 

- ( ,L~ffx 8 e- ~/~ = 0 (68) 

Since 9~ =0, the temperature profile during the singular region 
is calculated by Eq. (68). The optimal temperature profile for 
the singular region of a tubular reactor is 

0 = t q -  r 2 (69) 

r2z~B 

The optimal control profile of  0c is calculated from the opti- 
mal temperature profile calculated by Eq. (69). 
2-2. Nonsingular Control Approach 

When the initial reactant temperature is not at the singular 
state, the first control action should be bang-bang (maximum 
or minimum) to bring the reactor to the singular state. If the 
initial temperature of reactant is at the singular state, this prob- 
lem can be solved by a simple gradient search algorithm. Other- 
wise, bang-bang control is applied. This bang-bang control is 
converted to a temperature gradient limiting control. For the 
singular control region, this problem can be converted to a tem- 
perature optimal control problem. The temperature of the bang- 
bang control region is constrained by the initial reactant tem- 
perature and maximal (or minimal) temperature variations due 
to coolant temperature limitation. Therefore, Eqs. (44) to (46) 
are rewritten as below with the control variable, O. The opti- 
mal profile of the dimensionless temperature 0 can be calculat- 
ed by control vector iteration. After the optimal temperature is 
calculated, the optimal coolant temperature is calculated from 
state variables and the derivative of the reactor temperature. The 
performance index is the same as that of the singular control 
system. 

d x A -  axle -'~/~ (56) 
dy 

% - x,0_/ xB e- (57)  
dy 

P = Max[x n (z = 1)1 (58) 
0 

The relation between coolant and reactant temperatures is cal- 
culated by Eq. (46). 

dO + ( t ~ l X ;  e + ~ 2 x B  e-  r J  

0c = 0 + (70) 
Y 

The Hamiltonlan of this system is described as follows : 

H = :it(- o~x2e - x/a) + X2(otx2e- x/o_ fix a e- rJa) (71) 

Adjoint variables of nonsingular control variables are defined 
as follows : 

dZl OH 
dy - Ox a - 2o (~  - ~ )x  a e- ,r162 (72) 

d ~  OH 
dy = O~x n = - , ~ e -  ~0 (73) 

For the optimal operation of the system, the derivative of the 
Hamiltonian with respect to the dimensionless temperature 
should be zero. 

OH - 2 - x/o . 

- ( ~ x a  e- r'/~ = 0 (74) 
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Dimensionless temperature conswaints of this system are ~y--0)= 
0o and / ~  _< 0 < _ / ~  The control variable constraints, 0~  and 
0,~=, are determined by the coolant or steam temperature. The 
reactor temperature is changed with the coolant temperature 
changes. The optimal control profile for the overall reaction 
period is calculated from the adjoint variable and other state 
variables. The optimal temperature profile for the singular 
region is obtained from a simple analytical technique. The di- 
mensionless temperature profile is calculated from Eq. (74). 
The result is the same as Eq. (69). 

0 = ~ - r2 (69) 

In [ ~'1()~2 - '~1)C0r 

L 
The reaction parameters used for the simulation are listed in 
Table 3. 

Using the kinetic parameters in Table 3, we calculated the 
optimal temperature by Eq. (74). The optimal temperature pro- 
file for this reaction is shown in Fig. 3. The optimal starting 
temperature is 370 ~ The reactant temperature should be in- 
creased up to 370 ~ to increase the reaction rate from compo- 
nent A to component B. If the temperature is higher than the 
optimal, B converts to C rapidly. For an initial reaction tem- 
perature of 280 ~ the optimal operation of this system is shown 
in Fig. 4. 

Since the initial temperature is lower than the optimal tem- 
perature, the reactant should be heated up to optimal reaction 
temperature. When the dimensionless reactor length is 0.08, the 
reaction eonch'tion reaches the singular are and this arc is main- 
tained to the end of the reactor. Since the initial temperature 
is low, the reaction rate is slow and there is small change in 
conversion. 

If there is a state variable constraint in this system due to 
the properties of the reactor, the optimal results can also be 
calculated by the nonsingular method. Since the reactor tem- 

Fig.3. Optimal temperature and conversion profiles without 
coolant and steam temperature constraints. 
(a) Conversion and (b) Temperature profile 

Table3. Kinetic parmneters which used for this system [Douglas 
and Denn, 1965] 

Parameter Values 
kl0 5 • 101~ 
k2o 3.33 X 1017 

E1 18000 
E2 30000 

CeA 1 
c., 1 
Cv c 1 
PA 1 
Pa 1 

PC 1 
--Z~-I 1 �9 3000 
-~ri~ 3000 
h 10 
r 1 
1 100 
v 10 

Fig. 4. The optimal profiles of state and control variables with 
steam temperature constraints (0o--0.28, 0m~--0.373). 

perature is taken as the control variable, the optimal operat- 
ing temperature is calculated by a simple gradient technique 
with control variable constraint. After the calculation of the 
optimal reactor temperature, the coolant temperature is cal- 
culated from Eq. (70). When the dimensionless reactor tem- 
perature does not exceed 0.35, the optimal reactor and cool- 
ant temperature profiles are shown in Fig. 5. 
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Fig. 5. ~ coolant and reactor temperaa.we profiles reactor 
temperature cannot be greater than 0.35 (00---0.28, 0,~= 
0.353, and 0,~,~=0.372). 

This system can have one more control action change, de- 
pending on the minimal coolant temperature particularly, when 
the heat transfer rate is decreased to a half of the original trans- 
fer rate. Coolant temperature should be lower than that indi- 
cated in Fig. 4. Fig. 6(a) shows the sharp decrease in coolant 
temperature due to the low heat transfer rate. The minimal 
cooling dimensionless temperature of Fig. 6(a) is 0.269. It is 
lower than the freezing point of water. Because iced water 
cannot be used as a coolant, the minimal coolant temperature 
should be higher than the chilled water temperature 0.283. Con- 
sidefing coolant temperature limitations, the optimal control 
profile of this system is shown in Fig. 6(b). The number of 
switching times is increased from 1 to 2 due to the control ac- 
tion constraints. 

CONCLUSION 

A nonsingular transformation algorithm was proposed in this 
paper. The equivalency between the singular control algorithm 
and nonsingular Uansformation algorithm was verified with math- 
ematical derivation. 

Two chemical engineering problems, exothennic chemical 
reaction and series reaction, were proposed as examples. The 
numerical optimization algorithm was proposed for the calcu- 
lation of optimal control profiles. The calculated optimal con- 
trol profiles with a nonsingular transformation algorithm were 
shown to be same as those calculated with a singular control 
algorithm. 

For the system with one or more switching points in the 
optimal control profiles, it was difficult to determine the opti- 
mal profiles with the singular control algorithm. However, the 
optimal control profiles were easily calculated with the develop- 
ed nonsingular transformation algorithm. 
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Fig. 6. (a) Heat transfer rate is decreased to half of original 
value without eaolant tem~ratare  constraint. Ca) Heat 
transfer is decreased to half of original value with cool- 
ant temperaalre eanstralnt (0,~,----0.283). 

N O M E N C L A T U R E  

A, B : chemical species 
b : constant vector 
e : function vector (f/b) 

CAo : initial concentration of component A [gmol/cm 3] 
C e : heat capacity [cal/g/K] 
E : activation energy [cal/grnol] 
E1 : activation energy corresponding forward reaction [cal/mole] 
E2 : activation energy corresponding backward reaction [cal/mole] 
F : control variable 
f : nonlinear vector function of state vector 
F,~ : maximum allowed control 
Fm~ : minimum allowed control 
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F~ : singular control 
g : functional form of control variable 
G(g) : functional form of performance index 
All : heat of reaction [cal/gmol] 
h : heat transfer coefficient [cal/cm2/I(/min] 
H : Hamiltonian 
J : (- AH)/Cp p [K mL/mole] 
kl : reaction constant [gmolfcma/min] 
k2 : reaction constant [1/min] 
1 : the reactor length 
PI : performance index 
q : order o f  singularity 
r : radius of reactor [cm] 
R : reaction rate [min -1] 
Ro : gas constant [cal/gmol/K] 
T : reactant temperature [K] 
t : reaction time [hr] 
Tc : cooling jacket temperature [K] 
t s : final time [hr] 
To : initial reactant temperature [K] 
U : control variable, proportional to heat transfer coefficient 
v : flow velocity [cm/min] 
V : volume [L] 
V~,,~ : maximum reactor volume [L] 
x : state vector 
xa : mole fraction of A 
Xo : initial condition of state vector 
y : dimensionless variable [z//] 
z : reactant position [cm] 
z : transformed state vector 

Greek Letters 

ct : dimensionless variable (ct = kl~176 

) 

q~ : switching function 

~' : dimensionless variable (Y= rvpep2hl )~ 

~ : dimensionless variable ~ = 

~, : vector of adjoint variables 
0 : dimensionless temperature [T/TR] 

p : density of fluid [g/cm 3] 
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