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Abstract — A nonsingular transformation algorithm which converts a singular control problem to nonsingular one
was developed to calculate optimal control profiles. Several chemical engineering problems for applying a nonsingular
transformation algorithm were presented and optimal profiles were calculated in this paper. The singular control al-
gorithm and nonsingular transformation algorithm were compared. The efficiency of the transformation algorithm
was displayed in this article. The switching points from bang-bang to singular control were calculated by imposed

initial conditions and control variable constraints.
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INTRODUCTION

Various numerical methods [Fraser-Andrews, 1989; Maurer,
1976; Modak et al., 1989; Seinfeld and Lapidus, 1968; Soliman
and Ray, 1972] for calculating singular optimal profiles have
been developed. Since the optimal singular profiles are a func-
tion of state and adjoint variables, and the initial conditions of
state variables and final conditions of adjoint variables are
known, some researchers [Maurer, 1976; Oberle, 1979] have
used a multiple shooting method to solve this two-point bound-
ary problem. The computational difficulties related to a singular
control problem are often serious in calculating optimal con-
trol profiles. Although the gradient method [Ko and Stevens,
1971] was sometimes applied to a singular control system, ac-
ceptable convergence was not obtained. Some researchers [Ko
and Stevens, 1971; Soliman and Ray, 1972] have produced sub-
optimal but not actual optimal solutions.

Transformation methods were developed to circumvent the
difficulty in solving the singular control problem. Kelley [1966]
developed a transformation method which decreases the order
of the system and converts the singular problem to a nonsin-
gular control problem. The first order partial differential equa-
tions have to be solved to use Kelley's transformation. There-
fore, this method is rarely used for the optimal control solu-
tion. Soliman and Ray [1972] used transformation of the con-
trol variables, &u= du; + &u,, proposed by Goh [1966], to cal-
culate the optimal control profile. They compared solutions of
each method. However, they could not produce actual optimal
control profiles using their transformation technique. Modak
et al. [1989] proposed unidirectional computational algorithms
for the calculation of singular control profiles of single cell
protein production [Chen et al., 1977; Dibiasio et al., 1981]
with switching time estimation.
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The basic idea of this paper is to convert a singular control
problem to a nonsingular one by using transformed control vari-
ables with gradient and initial condition constraints. If the initial
conditions of the system are not at the singular state, bang-bang
control actions are imposed to make the system in a singular
state quickly and efficiently. Optimal trajectories for a system that
has the bang-bang and singular control regions should have the
maximal time for the singular control period.

In this article, the optimal control profiles of the chemical
engineering system are calculated with a developed nonsingular
optimization approach.

SINGULAR CONTROL

Singular control problems are formulated when the control
variables appear linearly in the system equations. If we calcu-
late the Hamiltonian of this system, it appears as a linear func-
tion of control variables, and the optimal control profiles are
very difficult to calculate for higher order and complex systems.
The systems are given as the following differential equations :

x=1(x) + bF )
x(t) =x, ()

where f is a nonlinear function of a state vector, b is a con-
stant vector, F is a control variable, and x, is the initial con-
dition of the state vector.

The objective of the optimal problem is to calculate the op-
timal control profile, F(t), which minimizes a performance index
that is a function of state variables. Constraints are typically im-
posed on control variables :

Maximize [P1 = G(t,, x(t,))] 3)

Q)
In the above equations, PI represents the performance index,
G is the functional form of the performance index, x(t) is the

F,, <F<F,,
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state vector x at the final time t; F,., is minimum control al-
lowed, F,,, is the maximum control allowed, and t is the elaps-
ed fermentation time. This performance index may be a function
of the final time, which may either be fixed a priori or left un-
specified. This problem is a standard calculus of variations prob-
lem. This system is considered a singular control problem be-
cause the Hamiltonian is a linear function of the control vari-
able, F. The optimal control variable profile can be determined
by the minimum principles of Pontryagin [1962].

MINIMUM PRINCIPLES OF PONTRYAGIN

The control, which minimizes the Hamiltonian, minimizes the
performance index. The Hamiltonian is a scalar function of the
state and adjoint variables. It has a constant value during op-
timal operations and is represented by multiplication of ad-
joint variables and state equations as defined by the follow-
ing equations :

H = A7 [f(x) + bF] = W(A, ) + §(DF ©)
where

y=A"f ©)

¢=ATb )

where the adjoint vector, A(t), must satisfy the following or-
dinary differential equations :

T
= OH__(of) ;g
=== (axj A=—1£A ®)
and the transversality conditions are defined below.
()
Aty ox(t,) ®

The minimum principle is to find the control trajectory which
makes the Hamiltonian constant. Time derivatives of the Hamil-
tonian are represented by the following equation and are equal
to zero. Due to the relation between state variables and adjoint
variables, the first two parts cancel.

Since the Hamiltonian is linear in the control variable, F(t), the
feeding policy depends on the coefficient, ¢, which is called
the switching function. When ¢ is positive, the optimal control
is Foar, and the optimal control is F,;, when ¢ is negative. If
¢ is identically zero over a finite time interval, t;<t<(t, then
the maximum principle cannot specify the optimal control dur-
ing the interval. This is called the singular interval and the opti-
mal feed rate is called the singular feed rate, Fy(t). The trajec-
tory followed by the state variables during the singular inter-
val is called the singular arc. The optimal feeding policy is
defined below :

F, ¢>0

F®) = (F (1) ¢=0 (1n
F,o ¢<0

The optimal feed rate sequence is a combination of bang-bang

and singular intervals.
1. Singular Optimal Control Strategy

During the singular interval, the minimum principle cannot
provide sufficient information to determine the singular feed
rate and we have to use singular control theory. Since the switch-
ing function, ¢, is identically zero during the singular interval,
all of its time derivatives must also be zero:

&9 _ 40

L =¢g® =0 k=1,2 -, 12
L2 ¢ 12)
where ¢® represents the k-th order time derivative of ¢. A gen-
eral expression for the singular feed rate is obtained by differen-
tiating twice the switching function, ¢, so that F appears linearly.
The first order dimensionless time derivative of ¢ yields :

¢p=Ab=—Tab=2c=0. (13)
The switching function is once again differentiated :
¢=Ac+ e x=—AT£,b+ATc,(f+bF,)=0 (14)

which can be rearranged to obtain the general expression for
E():

— Z'T (fxc - fo)

F . <F@®= —Tbe— L Fpax 15)
which is a nonlinear function of state and adjoint variables
where the subscript s denotes evaluation during the singular pe-
riod. Without elimination of A from this equation, obtaining the
optimal feed profile requires solution of this two-point boundary
value problem, in which the initial condition of the state vari-
ables and the final conditions of the adjoint variables are known.
Kelley et al. [1989] showed that the following (Generalized
Legendre-Clebsch) condition is necessary for the optimality of
a singular arc.

1’ (%[% H.(x, A, t)] >0 (16)

where, q denotes the order of singularity.

DEVELOPMENT OF NONSINGULAR
TRANSFORMATION ALGORITHM

For higher order systems having complex dynamic models,
it is very difficult to derive the explicit or simple functional
expression for the singular control profile. Several mathemat-
ical and numerical approaches have been adopted to solve a
singular system by using minimum principles. Conjugate gradi-
ent methods have been used for the entire reaction time ; how-
ever, they cannot determine the exact switching points.

Some trials had been done to transform the original singular
control problem to a simple form of a nonsingular optimiza-
tion problem. Kelley [1966] proposed a transformation method
which converts a singular control system to a nonsingular con-
trol one by decreasing the order of the system. This method
needs a first order partial differential equation solving proce-
dure and is difficult to implement for complex nonlinear dif-
ferential equations. Other researchers have used different trans-
formation methods and modifications to calculate suboptimal
control profiles.
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A modified nonsingular control strategy was developed to
determine optimal control profiles by transforming control vari-
ables and their constraints.

N-th order fed-batch fermentation systems are described by
the following differential equations.

X =f (X s X5 O, i=1,..,n-2 a7
x_,=F (8)
%, =f (%, ... ,x,,,t)+SfF, i=1,..,n

F,, <F()<F,, (19)
Minimize[P1 = G, x(t, ) 20)

where, F is the control variable (feed rate) and PI is the per-
formance index of the system to be minimized. We introduce
transformation variables (z;) to change the singular control sys-
tem to a nonsingular control system and define a new control
variable.

Z, =X, i=1,2,..,n-1 1)

z, =x,/%X,; [New control variable] (22)

Since x, and x,-; are functions of the control variable F, and
F is limited by F,; and F,., the time derivative of the new
control variable is also constrained.

ZMn< 7, <z (23)
where, z;™ and zJ™ are calculated by state variables and limita-
tion of control variables, F,,, and F,...

The time derivative of x, is replaced by a function of z, and
Zy- 3. .

(29

X, =fon +f1nF=z"F+z”zn_1

The original control variable F is represented by a function
of the modified control variable z, and its time derivative.
. _f _
P ™ 2z 2) 5)
fln -z, "
where, z, is calculated by the transformed control variable z,
and is a function of time. Rewriting system equations by us-

ing the transformed variables given :
z =f (2, s 2, 1), i=1,..,0-2 (26)

z,= fo’"_1 (Z; coees 2,5 D),

=Lz, +(5, - 2,07, , O} @7

z
n-1 Sf -z,

with constraint by the final condition of volume.

1
Sf—zz

g= {z, +(;-2,0)z, ,0)}-x, , <0 (28)

The Hamiltonian of this system is represented as a function
of state and adjoint variables.

H=2z+ag=h+og 9
20 when g=0
where & {=0 when g<0

The gradient of substrate concentration is a function of time
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and determined by substrate concentration profile. The adjoint
equations must satisfy the following ordinary differential equa-
tions :

dh 98

il g:O
. 9H dX oX
x| o G0
X g<0

Since the Hamiltonian is a nonlinear function of S, a control
vector iteration technique can therefore be used to solve this

~problem. The derivative of the Hamiltonian with respect to sub-

strate concentration is :

dH _ oh Jg
- = 1
oz, 0dz, ta 0z, 0 1)

For g<0, =0 and Eq. (31) determines the optimal control
profile S". For g=0, Egs. (26 and 31) determine the S’ and o
which is needed in Eq. (30). '

From the derivation, we can prove that optimal profiles of
singular control variables in a singular control system are the
same as nonsingular optimal profiles of transformed control vari-
ables. Therefore, the calculation of optimal profiles using a non-
singular technique can be applied for higher order and complex
dynamic systems.

NUMERICAL PROCEDURES

1. Guess the initial optimal control profiles (this automatically
determines its derivative).

2. Calculate the control variable constraints (the initial sub-
strate concentration and the derivatives of the substrate concen-
tration at the maximum and minimum feed rates).

3. Calculate the state variables by forward integration of Eq.
Q).

4. Calculate the adjoint variables by backward integration of
Eq. (8).

5. Calculate the derivatives of the Hamiltonian from Eq. (5).

6. Update the substrate concentration profile using the follow-
ing control vector iteration with the substrate concentration con-
straint [Eq. (28)].

i+l — i dH t
7 (t)—z,.(t)—e[ & ] (32)

7.Iterate until the increase in the performance index is less
than a specified tolerance (Steps 3 through 6).

8. There may be one or more switching time(s) if the gradi-
ent of the control variable is greater or less than the maximum
or minimum control allowed. In this case, set the control action
(s), pick the switching time(s), and calculate the optimal sub-
strate concentration profile using Steps 1 through 7.

9. Compare the performance index for different switching
time(s), if applicable, and select the best performance index,
switching time(s), and optimal substrate profiles.

1. Example I. Exothermic Chemical Reaction in PFR

The first example was adopted from Ko and Stevens [1971a,
b]. The first-order reversible, exothermic chemical reaction tak-
ing place in a plug-flow tubular reactor is considered the model
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Table 1. The parameters which were used for this system

Parameter Value
ko 175360
Ko 2.4885x 10"
E, -11374

—22748
J 300
T, 290
) 5
Xao 0.27
T, 415
system.
ky
A~—— > B

k>

The mass and energy balance equations of this reaction are
given by

x, =k (1-x,)-k,x, =R (33)
T=JR-U(T-T,) (34

The reaction constants are a function of temperature and ex-
hibit Arrhenius kinetics.

k, = kme—E‘/R"T and k, =k, e 35)
The reaction parameters of this system are given in Table 1.

This problem has been solved by several researchers [Ko and
Stevens, 1971b; Modak et al., 1989; Siebenthal and Aris, 1964]
using various optimal control methods. Ko and Stevens [1971b]
have used the combined gradient method to calculate the opti-
mal control profile of the heat transfer rate. Optimal profiles
for several cases of control variable constraints are obtained
using the combined method. Modak et al. [1989] used a uni-
directional algorithm to calculate the optimal control profile.
The optimal switching points were estimated and the flow rate
was calculated explicitly.
1-1. Singular Control Approach

The control variable U is the heat transfer rate of the tubular
reactor and is dependent upon fluid mixing or other coolant prop-
erties. The minimal control action of this system is zero, de-
noting the reactor at the adiabatic state. The maximal value of
the control action is determined by the coolant properties and
flow rate.

The object of this control problem is to maximize the con-
centration of B. It is the same as minimizing the concentra-
tion of A.

J=Min[x, (t
finfx, ()] (36)
The Hamiltonian of the system is given as

H= A‘l[kl(l _XA)—kzxA ] +12[J(k1(1 _XA )kzxA )_U(T_Tc)] (37)

The adjoint variables are calculated by taking the derivative
of the Hamiltonian with respect to the state variables with final
conditions calculated by the derivative of Eq. (36) with respect
to the state variables.

=k ==y + AJ)k, +k,) At)=1 (38)

~ A==y +ADK(-x)-kx,]-AU  At)=0 (39)

Since the Hamiltonian is a linear function of the heat transfer
rate, this system is classified as a singular control problem and
it may have bang-bang and singular control. The switching func-
tion of this system is calculated from the derivative of the Ham-
iltonian with respect to the control variable.

M
0= S5 = AT T0) 0)

Control action U is determined by the sign of the switching
function. If the switching function is greater than zero, the con-
trol action should be minimal. If it is less than zero, the control
action should be maximized to minimize the Hamiltonian. When
the switching function is equal to zero, a singular control al-
gorithm should be applied to calculate the optimal control ac-
tion. By application of singular control theory, the optimal con-
trol profiles are calculated. Singular control appears only when
A, =0. The optimal control during the singular interval is cal-
culated by setting the switching function equal to zero. The
singular control profile of this system has been calculated by
Ko and Stevens [1971b].

JR + RZIR (41)
-T, R,(T-T)

IR _R
atox, ¢ 2=

UO=

where, R, =

From Eq. (39) and 2,=0, the relation between temperature and
conversion during the singular control period is derived as fol-
lows:

El _Ez

kE(1-x,)
In 101 A
l: kyoE x, }

T=

“42)

The relation between temperature and conversion during the
singular period is derived by Eq. (42). After calculation of con-
version and temperature, the singular control profile of U is cal-
culated by using the derivative of the conversion and Eq. (34).
1-2. Nonsingular Control Approach

As shown in the example, it is difficult to derive the explic-
it functional form of singular control profiles using singular
control technique and to determine switching times for some
cases.

Therefore, we transformed the singular control problem to
a nonsingular control one with temperature as a control vari-
able. The objective for this system is to maintain the reactor
temperature at its optimal state by manipulating the heat trans-
fer rate. Since the reaction starts at the initial temperature (not
singular temperature) and the cooling rate is limited by coolant
properties, the control of the temperature profile is constrained.
Therefore, the optimal control of this system is composed of
a constrained period and an optimal period. During the first
period of reaction, the control variable U has limited control
action in attaining a singular state as soon as possible. The
first constrained control action is used to increase the reactant
temperature for this problem. The switching time is the point
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at which the control action changes from bang-bang to singular
control. If the maximum control action is infinite, impulse con-
trol action can be used to change a reaction environment to
a singular state. The control variable U controls the tempera-
ture at its optimal state. Therefore, the coolant flow rate con-
trol problem can be converted into a simple temperature con-
trol problem. The control action U is determined by converting
Eq. (34) into U as a function of temperature and conversion.

T+JR
= 43
U T-T, 43)

By applying the maximum principle to Eq. (33), we can
calculate the optimal trajectories of temperature and concen-
tration by the following procedure. To minimize the final con-
centration of X;, the reaction rate should be maintained at the
maximal rate during the reaction period. The objective is achiev-
ed by making the derivative of Eq. (33) with respect to tem-
perature equal to zero.

dR 0= kB, e—E,/R_T.(l_XA)— k,E, e—E/R,T'x

9T R,T R, T2 4

The temperature is calculated from Eq. (44) and the solution
is the same as Eq. (42).

E - E2
m [kwEla —x,o}

(44)

T= (45)

kEx,

Some problems can be solved by nonsingular algorithm with
a mathematical approach, in which a switching time does not
need to be estimated. From Eq. (44), the phase plane tempera-
ture and concentration are calculated. Fig. 1(a) shows the opti-
mal trajectory (singular trajectory) phase plane. If the initial con-
centration of C, is pure, the initial optimal operating temperature
for this system is infinity. Since the reactant feed temperature
is 415 K, the first control action for this system is the minimal
value of the control variable to increase the reactor temperature
up to the singular temperature. Therefore, the singular control
action should be followed by minimal control action. By apply-
ing minimal control action to Eq. (34), the trajectories of tem-
perature and conversion are calculated by the following proce-
dure. Let U=0 and divide Eq. (34) by Eq. (33). The slope of
initial control action on the phase plane is 300, as shown by
the dotted line in Fig. 1(a).

T dT

Z = ?x: =J=300 (46)

From the initial state, the reactor operation follows the straight
dotted line, the slope of which is 300. The straight line in-
tersects with the singular arc (optimal trajectory) and follows
it until the reaction stops or final conditions are reached. There
can be another limited control action, the existence of which
is determined by the maximal heat transfer rate. If the maximal
control variable is smaller than the critical control variable, there
should be another limited control action (U,,,). The critical con-
trol variable is calculated at the intersection between the dott-
ed line and singular arc. The critical flow rate is determined
by Eqs. (33) and (34), and the result is shown in Fig. 1(b). The
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(a)
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Temperature
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Singular trajectory
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0.0 2 4 6 8 1.0

Conversion

(b)

Critical coolant flow rate (U___)
=
1

0.0 T T : .
0.0 2 4 6 8 1.0
Conversion
Fig. 1. (a) Phase plane of possible optimal trajectory. (b) Critical
heat flow rate.

gradient, dx,/dx,, is calculated by numerical methods using the
results in Fig. 1(a). The following equations were developed
from the relation between Eq. (33) and Eq. (34):

T _ 4T _R-U(@-T) @

UC - X2 — Tc (48)
As shown in Fig. 1(b), the critical control variable of this sys-
tem is 0.6. At the intersection, the conversion and temperature
are 042 and 470 K, respectively. When the conversion is 0.42,
the critical control variable is 0.6. It is represented by the dotted
line in Fig. 1(b). Fig. 2(a) shows the optimal control profile
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(a)

Heat Transfer Coefficient

0.0

Reactor length

74 (b)
6 -
5
4
3 -
2 -
14

0.0 T T T T
470

Conversion

460

450

430 +

Reactor temperature
1

420

410 T T T
0 1 2 3 4 5

Reactor length

Fig. 2. (a) Optimal heat transfer rate profile calculated by non-
singular transformation algorithm (control action changes
from minimum to singular). (b) Optimal temperature and
conversion profiles initial temperature is 415 K and
conversion is 0.25.

of the tubular reactor calculated from the optimal temperature
profile shown in Fig. 2(b). As explained before, the control ac-
tion changed from minimal to singular. Since the critical con-
trol variable is the same as the maximal control variable, only
one switching point exists in this problem. Point A in Fig. 1(a)
is the reaction starting point of this system. At point B, the con-
trol action changes from minimum to singular. The optimal con-
versions and temperature profiles are shown in Fig. 2(b). The
temperature rapidly increases when the control variable is a min-
imum. After the minimal control action, the temperature pro-
file follows the singular control profile. Ko and Stevens [1971b]
have drawn the phase diagram after solving the problem using
a combined gradient method and analyzing the optimal trajec-
tories.

2. Example II. Series Reaction in a Plug Flow Reactor

To review the number of switching time changes with chang-
es in the control variable constraints, a series reaction in a plug
flow reactor is used as a model system [Douglas and Denn,
1965]. The change in number of switching points is calculat-
ed by the nonsingular control technique. There are three com-
ponents in the reactor. The reaction constants follow Arrhenius
kinetics.

k1 kz

A— B — C
The reaction kinetics and the initial concentration of each com-
ponent are calculated as follows :

dX,

it =-k,C, x? x,(0)=1 49)
dx 2 50
T:kIConA—ksz x,(0)=0 (50)
X, =1-x, +%, 628

where, k, =k g¢” " and k,=ke 7.
The material and heat balance equations for a plug flow reac-
tor have the following form.

v kG, %2 (52)
d

v—£ =k,C, xZ-kx, (53)

dT _ 2mh(T, - T) - (- AH )k, CR x7 + (- AH)k,C, x; )

dz m*vpC, (54)

where, p=p, x,+ pyx;+p-x., and C, =C, x, +C, x, + C, X .
The object of this control problem is to maximize the con-

centration of B at the end of the reaction by manipulating the
coolant temperature. The performance index of this problem is

PI=Min[x, (z=1)] (55)

We have used several dimensionless variables to simplify the
equations.
2-1. Singular Control Approach

Egs. (52) to (54) are changed to a simple dimensionless form
and are given as the following equations :

dx —x/8

d—; =-oxle " (56)
o ) ] .

— = =—oxie 0~ prye (57)
dy

o - .

" 7O, - @) - [08,x2e * + Box, ¢ (58)

Table 2. Dimensionless variables used in the series reaction

y=Z, gz XSl g k-zol g 2 5 CAHC,
r v ’ vpC, . PG Ty ’
8= C 7J ’9=l”c1= E, ,and x,= E, )
pC, T, T, R T, R T,
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For the minimization of the performance index, Pontryagin's
maximum principle is used. The Hamiltonian of this system
is given as

H=A,(- ox2e” %)+ A2 ™ - Pr, e
+ 210, - @) (@Bx2e ™ + Box ¢ Y] (59)

To maximize the Hamiltonian of this system, the switching
function is employed and the singular control technique appli-
ed for this system. The switching function of this system is

(60)

BT

To maximize the Hamiltonian of this system, the following
control scheme should be applied :

9>0 0. = 6onax

$<0 6.=0,_,,

¢=0 6. =singular control (61)
When ¢=0, a singular control strategy is needed for this sys-
tem. A singular control region exists for the case where ;=0
and 4 =0. The adjoint variables of this system are calculated
as follows:

- e =20 1y A 6
R ©3)
_%=%=[l(—mA "‘/‘3+lzaxe"‘/9

+ A,08.x% (/)
~Oofrye™ + 2o Ny B)- sy (64)
The final conditions of the adjoint variables are calculated by

differentiating the performance index with respect to its state
variables.

M) =00, At)=-1, and A(t,)=0.0 (65)

The singular control technique is applied to the system.
However, the explicit form of 6. is not calculated during the
derivation of switching functions. The derivation of 25 is too
complex to calculate as an explicit function of 6. Since the
final condition of A; is equal to zero and its derivative is also
equal to zero, this system should be simplified to the optimal
temperature profile calculation problem. The simplified adjoint
variable equations are as follows :

dA, oH _ _ - x/8

_Tyl_&:—zdll A-I)XAC * (66)
dlz _ oH — - x/8

Ty T A,pe 67)

_94 = B_H =(-0x2e 8+ roxie "‘"’)(xl/ez)

-(ﬂzﬁxse "N/ 69 =0 (68)

Since A3=0, the temperature profile during the singular region
is calculated by Eq. (68). The optimal temperature profile for
the singular region of a tubular reactor is

January, 1999

K -

0= 175 (69)
(A, — A)ox?
KA. Pxg

The optimal control profile of 6, is calculated from the opti-
mal temperature profile calculated by Eq. (69).
2-2. Nonsingular Control Approach

When the initial reactant temperature is not at the singular
state, the first control action should be bang-bang (maximum
or minimum) to bring the reactor to the singular state. If the
initial temperature of reactant is at the singular state, this prob-
lem can be solved by a simple gradient search algorithm. Other-
wise, bang-bang control is applied. This bang-bang control is
converted to a temperature gradient limiting control. For the
singular control region, this problem can be converted to a tem-
perature optimal control problem. The temperature of the bang-
bang control region is constrained by the initial reactant tem-
perature and maximal (or minimal) temperature variations due
to coolant temperature limitation. Therefore, Eqgs. (44) to (46)
are rewritten as below with the control variable, 6. The opti-
mal profile of the dimensionless temperature 6 can be calculat-
ed by control vector iteration. After the optimal temperature is
calculated, the optimal coolant temperature is calculated from
state variables and the derivative of the reactor temperature. The
performance index is the same as that of the singular control
system.

dx -x/8
TyA— =—oxle * (56)
9% =oxZe w0 _ Bxze /0 7
dy
P= M;ix[xB z=1) (58)

The relation between coolant and reactant temperatures is cal-
culated by Eq. (46).

[E +(abx2e 0y Box,e w)]

6, =0+ 70
" (70)
The Hamiltonian of this system is described as follows:
H=A,(- oxZe “% 4+ AfoxZe 0 _ Bx e <8 71D

Adjoint variables of nonsingular control variables are defined
as follows :

_Fy____— 2002, = A )%, € (72)
di, oH _ -x/8
BT e (73)

For the optimal operation of the system, the derivative of the
Hamiltonian with respect to the dimensionless temperature
should be zero.

= qee P LaxZe Yk /6
- (ABxe /6 =0 (74)
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Dimensionless temperature constraints of this system are &y=0)=
6, and §,, < 0< @, The control variable constraints, 8,;, and
8., are determined by the coolant or steam temperature. The
reactor temperature is changed with the coolant temperature
changes. The optimal control profile for the overall reaction
period is calculated from the adjoint variable and other state
variables. The optimal temperature profile for the singular
region is obtained from a simple analytical technique. The di-
mensionless temperature profile is calculated from Eq. (74).
The result is the same as Eq. (69).

0= 575 (69)
Kl(a‘l — 2'1)05":
KA Px,

The reaction parameters used for the simulation are listed in
Table 3.

Using the kinetic parameters in Table 3, we calculated the
optimal temperature by Eq. (74). The optimal temperature pro-
file for this reaction is shown in Fig. 3. The optimal starting
temperature is 370 °K. The reactant temperature should be in-
creased up to 370°K to increase the reaction rate from compo-
nent A to component B. If the temperature is higher than the
optimal, B converts to C rapidly. For an initial reaction tem-
perature of 280°K, the optimal operation of this system is shown
in Fig. 4.

Since the initial temperature is lower than the optimal tem-
perature, the reactant should be heated up to optimal reaction
temperature. When the dimensionless reactor length is 0.08, the
reaction condition reaches the singular arc and this arc is main-
tained to the end of the reactor. Since the initial temperature
is low, the reaction rate is slow and there is small change in
conversion.

If there is a state variable constraint in this system due to
the properties of the reactor, the optimal results can also be
calculated by the nonsingular method. Since the reactor tem-

In

Table 3. Kinetic parameters which used for this system [Douglas
and Denn, 1965]

Parameter Values
Ko 5% 10"
' 3.33x 10"
E, 18000
E, 30000
Cp, 1
Cp, 1
Cp, 1
) 1
pB 1
Pe 1
~AH, -3000
~AH, 3000
h 10
r 1
) 100
v 10

1.0

\. (a)
8 1 \

Conversion
[

0.0 T T T T
375

(b)
370

365
360
355

350 +

Optimal Temperature Profile

345

340 T - - -
0 1 2 3 4 s

Reactor Length

Fig. 3. Optimal temperature and conversion profiles without
coolant and steam temperature constraints.
(a) Conversion and (b) Temperature profile

38

36 -

344

324:

30 4

Dimensionless coolant and
reactor temperature

28

26 T T T T
1.0

Conversion
/
/
/

Dimensionless length

Fig. 4. The optimal profiles of state and control variables with
steam temperature constraints (6,=0.28, 9.,..=0.373).

perature is taken as the control variable, the optimal operat-
ing temperature is calculated by a simple gradient technique
with control variable constraint. After the calculation of the
optimal reactor temperature, the coolant temperature is cal-
culated from Eq. (70). When the dimensionless reactor tem-
perature does not exceed 0.35, the optimal reactor and cool-
ant temperature profiles are shown in Fig, 5.
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38
l
E 36+ '
PR
B { __________
= 1l o ——-—
R ey
% nd
E :
g 04
2
=2
g
c— 28
.26 T T T L]
0.0 2 A 6 ] 1.0

Dimensionless Length
Fig, 5. Optimal coolant and reactor temperature profiles reactor

temperature cannot be greater than 0.35 (6,=0.28, 0,,.,=
0.353, and 6.,,,=0.372).

This system can have one more control action change, de-
pending on the minimal coolant temperature particularly, when
the heat transfer rate is decreased to a half of the original trans-
fer rate. Coolant temperature should be lower than that indi-
cated in Fig. 4. Fig. 6(a) shows the sharp decrease in coolant
temperature due to the low heat transfer rate. The minimal
cooling dimensionless temperature of Fig. 6(a) is 0.269. It is
lower than the freezing point of water. Because iced water
cannot be used as a coolant, the minimal coolant temperature
should be higher than the chilled water temperature 0.283, Con-
sidering coolant temperature limitations, the optimal control
profile of this system is shown in Fig. 6(b). The number of
switching times is increased from 1 to 2 due to the control ac-
tion constraints.

CONCLUSION

A nonsingular transformation algorithm was proposed in this
papet. The equivalency between the singular control algorithm
and nonsingular transformation algorithm was verified with math-
ematical derivation.

Two chemical engineering problems, exothermic chemical
reaction and series reaction, were proposed as examples. The
numerical optimization algorithm was proposed for the calcu-
lation of optimal control profiles. The calculated optimal con-
trol profiles with a nonsingular transformation algorithm were
shown to be same as those calculated with a singular control
algorithm.

For the system with one or more switching points in the
optimal control profiles, it was difficult to determine the opti-
mal profiles with the singular control algorithm. However, the
optimal control profiles were easily calculated with the develop-
ed nonsingular transformation algorithm.

January, 1999

(a) 38

34

32 A

30 1.

S LT TP

Dimensionless coolant and reactor temperature

.26 T T T !
0.0 2 4 6 8 1.0

Dimensionless length

(b) .38
36

34 4

32 4

Dimensionless temperature

304:

28 A

26 T - T T T
0.0 2 4 6 8 1.0
Dimensionless time
Fig. 6. (a) Heat transfer rate is decreased to half of original
value without coolant temperature constraint. (b) Heat
transfer is decreased to half of original value with cool-
ant temperature constraint (8,,,=0.283).

NOMENCLATURE

A, B: chemical species
b :constant vector
¢ :function vector (f;b)
C,, : initial concentration of component A [gmol/cm’]
C, :heat capacity [cal/g/K]
: activation energy [cal/gmol]
1 :activation energy corresponding forward reaction [cal/mole]

E; :activation energy comesponding backward reaction [cal/mole]
F  :control variable

f : nonlinear vector function of state vector

F,o :maximum allowed control

F,.. :minimum allowed control
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F, :singular control
: functional form of control variable
(g) : functional form of performance index
: heat of reaction [cal/gmol]
: heat transfer coefficient [cal/cm’/K/min]
: Hamiltonian
: (= 4H)/C, p [K mL/mole]
: reaction constant [gmol/cm’/min]
: reaction constant [1/min]
: the reactor length
: performance index
: order ‘of singularity
: adius of reactor [cm]
: reaction rate [min ']
: gas constant {cal/gmol/K]
: reactant temperature [K]
: reaction time [hr]
: cooling jacket temperature [K]
: final time [hr]
: initial reactant temperature [K]
: control variable, proportional to heat transfer coefficient
: flow velocity [cm/min]
: volume [L]
: maximum reactor volume [L]
. state vector
: mole fraction of A
: initial condition of state vector
: dimensionless variable [z/]]
: reactant position [cm]
: transformed state vector

QW

rrg<TCmT AT apmEne T ozTg

°

N N < M

Greek Letters

a  :dimensionless variable [a=
-kl
B :dimensionless variable [ﬁ = %J

—AH.)C
d  :dimensionless variable |5, = %
PG, Ty

¢  :switching function

Y  :dimensionless variable |y= zh! )

wpC,
k  :dimensionless variable | k, = —%
T RT,
A :vector of adjoint variables
0  :dimensionless temperature [T/Tz]

p :density of fluid [g/cm’]
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